А. Л. Карпук,

начальник УМО поддержки и развития эффективной образовательной практики Брестского областного института развития образования, учитель физики высшей категории

1. Ускорение свободного падения равно M/c^2 . Это число означает, что				
скорость свободно падающего тела за изменяется на $\emph{м/c}$.				
2. Если камень падает без начальной скорости в ущелье в течение $5c$, то его				
скорость при ударе о дно ущелья составит $_{}$ m/c . Глубину ущелья можно найти				
по формуле: . Она равна м.				
3. С балкона дома на высоте <i>25м</i> над землёй бросили вертикально Рисунок:				
вверх мяч, который поднялся до высшей точки за $2c$. Начальная				
скорость мяча была равна м/с. Мяч взлетел над балконом на				
высоту м, которую рассчитали по формуле: От				
высшей точки до поверхности земли мяч пролетел m за c .				
Время падения мяча найдено по формуле: Конечная				
скорость мяча равна м/с. Весь путь мяча за время полёта (
<i>c</i>) составил <i>м</i> . Средняя скорость мяча найдется по				
формуле: Она равна				
4. На вершине обрыва высотой <i>80м</i> установлено орудие, Рисунок:				
из которого в горизонтальном направлении производится				
выстрел. Снаряд вылетает со скоростью 100м/с. Движение				
снаряда можно рассматривать как комбинацию двух				
движений – вниз по вертикали (как?)				
и одновременно по				
горизонтали (как?) По				
вертикали снаряд пролетает $_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$				
равнойм/с.				
Используя формулу можно найти время падения. Оно				
равно c . В течение этого времени снаряд не только падал, но и смещался по				
горизонтали со скоростью м/с. Дальность полета снаряда найдётся по				
формуле Она равна м. Скорость снаряда в конечной точке				
полёта найдем, зная его горизонтальную скорость (м/с) и конечную				
скорость падения по вертикали ($_{__}$ $_{\it M/c}$):				
5*. Футболист отбил летящий мяч у Рисунок:				
поверхности земли, сообщив ему скорость				
$10\sqrt{3}$ м/с под углом 60^{0} к горизонту. Разложим 1				
начальную скорость мяча на две				
составляющие $-v_{o\ \textit{верm}}$ (по вертикали) и $v_{o\ \textit{гор}}$				
(по горизонтали):				
$v_{o \text{ sepm}} = \underline{\qquad \qquad M/c},$				
$v_{o \ cop} = \underline{\qquad \qquad } M/c.$				
Движение мяча рассмотрим отдельно по вертикали и по горизонтали:				
По вертикали мяч движется как тело, брошенное По горизонтали мяч				
вертикально вверх с начальной скоростью движется равномерно со				

<i>м/с</i> . Время подъёма равно	<i>с</i> . Максимальную	скоростью	_ <i>м/с</i> . За
высоту подъёма найдём по	формуле	время полёта мяч п	ролетит по
Она равна л	. Время падения с	горизонтали	м, что
максимальной высоты до	емли составляет	найдено по	формуле
$m{c}$, а полное время полёта ра	вно $\underline{\hspace{1cm}}$ c .	·	