Учим младших школьников считать без ошибок

Г. Н. Скидан

учитель начальных классов высшей категории Правомостовской СШ Мостовского района

Одной из важнейших задач обучения математике младших школьников является формирование у них вычислительных навыков, основу которых составляет осознанное и прочное усвоение приемов устных и письменных вычислений. Вычислительная культура является тем запасом знаний и умений, который находит повсеместное применение, является фундаментом изучения математики и других учебных дисциплин [2, с. 66]. При выполнении заданий на устный счет активизируется мыслительная деятельность учащихся, развиваются память, внимание, способность воспринимать информацию на слух, быстрота реакции [5, с. 65].

Сегодня вследствие повсеместного использования компьютеров и смартфонов проблема формирования у детей устных вычислительных навыков становится все более актуальной. Поэтому учителю необходимо уделять особое внимание решению данной задачи, используя различные приемы и виды устных упражнений. Над проблемой формирования у младших школьников устных математических навыков работали А. А. Столяр, М. А. Бантова, М. И. Моро, Н. Б. Истомина, О. П. Зайцева, А. В. Белошистая и др. Вычислительный навык — это высокая степень овладения вычислительными приемами. М. А. Бантова выделяет следующие характеристики полноценного вычислительного навыка: правильность, осознанность, рациональность, обобщенность, автоматизм и прочность [3]. По мнению М. А. Бантовой, Г. В. Бельтюковой, Н. Б. Истоминой, к основным видам устных вычислений относятся: 1) нахождение зна-

чения математических выражений; 2) сравнение математических выражений; 3) решение уравнений; 4) решение задач.

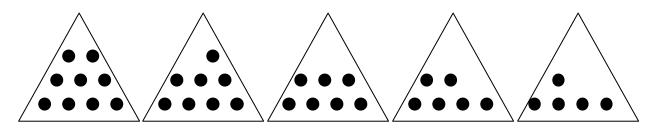
Сложение и вычитание — первые действия, с которыми дети знакомятся в самом начале школьного обучения. Результаты этих действий, прежде чем попадут в таблицу, находим с помощью предметных действий, устных вычислительных алгоритмов на основе смыслов и свойств действий, и лишь потом на основе закономерности таблицы. [6, с.160] Таблицу сложения и соответствующие случаи вычитания в пределах 10 условно делю на 4 группы.

Теоретические обоснования	Способ действия	Таблицы сложения и вычи-
		тания (4 группы)
Принцип построения нату-	Присчитывание и отсчиты-	+1; -1
рального ряда	вание по единице	
Смысл сложения и вычита-	Присчитывание и отсчиты-	+2; +3; +4
ния	вание по частям	
Переместительное свойство	Перестановка слагаемых	+5;+6; +7; +8; +9
сложения		
Взаимосвязь сложения и вы-	Правило: если из суммы вы-	-6; -7; -8; -9
читания	честь одно слагаемое, то по-	
	лучится другое слагаемое	

Таблица лучше запоминается тогда, когда она составлена самими учащимися и они понимают смысл этой работы. Составление таблиц первой группы не вызывает затруднений. При составлении таблиц 2-й, 3-й и 4-й групп работа организуется по этапам, описанным ранее, но дается установка на запоминание.

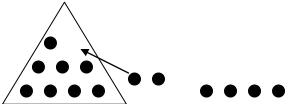
Устные приемы сложения и вычитания в пределах 100 и работу над ними можно представить в виде таблицы:

Случаи сложения и	Приёмы	Знания, умения и навы-	Подготовительные
вычитания	вычисления	ки учащихся	упражнения
30+20	3д.+2д.	Разрядный состав чисел	Замени десятками
60-40	6д4д.	30=3д.	числа 50,70,90.
		Таблица сложения и	Вычисли: 6+2; 9-4.
		вычитания в пределах	Назови числа, в ко-
		10.	торых 6д.7ед.
36+20	36+20= (30+6)+20=	Разрядный состав чи-	Замени суммой раз-
36+2	=50+6=56	сел. Свойство прибав-	рядных слагаемых
	(30+6) +2=30+8=38	ления числа к сумме.	38,45,74.
		Таблица сложения. По-	Вычисли: (2+5)+3
		разрядное сложение.	(40+3)+20; 50+7
46-30	(40+6)-30=10+6=18	Разрядный состав чи-	Замени суммой раз-
46-3	(40+6)-3=40+3	сел. Свойство вычита-	рядных слагаемых


			10.65.55
		ния из суммы. Таблица	48,65,77.
		сложения и вычитания	Вычисли: (50+5)-3
		в пределах 10. Сложе-	10-3, 4+3, 7-2
		ние на основе нумера-	50+8, 70+4, 30+3
		ции чисел в пределах	
		100.	
36+4	36+4= (30+6)+4=	Разрядный состав чи-	Замени суммой раз-
40-4	=30+10=40	сел. Умение заменять	рядных слагаемых
	40-4=(30+10)-4=	разрядные слагаемые.	68, 57.
	=30+(10-4)=36	Вычитание из суммы	Замени: 50=10+□
		числа. Таблица сложе-	60=10+□
		ния и вычитания в пре-	Вычисли: 2+6, 10-3
		делах 10.	
50-36	50-36=50-(30+6)=	Разрядный состав чи-	Замени суммой раз-
	=(50-30)-6=14	сел. Вычитание из чис-	рядных слагаемых
		ла суммы. Сложение и	28, 56.
		вычитание круглых де-	Вычисли:70-(40+3)
		сятков в преде-	40-(20+4).
		лах 100. Умение вычи-	Вычисли: 60+5, 80-7
		тать единицы из круг-	Вычисли:90-3, 70-8
		лых десятков.	,
46+7	46+7=46+(4+3)=	Состав чисел в преде-	Замени суммой сла-
	=(46+4)+3=53	лах 10. Умение допол-	гаемых: 9,6,8.
		нить однозначное число	Дополни до круг-
		до круглого десятка.	лых десятков: 24,
		Прибавление суммы к	47, 65.
		числу. Разрядный со-	Вычисли: 74+6,
		став чисел.	38+2. Замени сум-
			мой разрядных сла-
			гаемых 27,43, 54.
45-7	45-7=45-(5+2)=	Разрядный состав чи-	Замени суммой раз-
	40-2=38	сел. Умение вычесть	рядных слагаемых
		сумму из числа. Состав	67, 29.
		чисел в пределах 10.	Вычисли: 76-(6+3)
		1 ,,,	Замени суммой сла-
			гаемых: 9,6,8.

При обучении приемам сложения и вычитания с переходом через десяток можно выделить 2 операции: сначала дополняем первое слагаемое до 10, затем составляем число из десятков и единиц. Для этого использую наглядность.

Сложение и вычитание однозначных чисел с переходом через разряд.


Для ознакомления с приемом использую модель треугольника с десятью кружочками. Треугольник – это десяток, кружочки – единицы.

1) Сколько кругов надо добавить в каждый треугольник, чтобы получить 1 десяток? Запиши числовые равенства.

2) На сколько нужно увеличить число, чтобы получить десять?

Чтобы найти значения выражения 8+6, использую прием добавления по частям. Сначала на модели треугольник дополняем до десятка, а потом оставшуюся часть числа.

Наглядность позволяет быстрее осмыслить вычислительный прием.

<u>Изучение табличного умножения и деления</u> провожу в следующей последовательности: 1) для ознакомления со смыслом действий умножения и деления проводится подготовительная работа.

...

Сколько раз нарисованы прямоугольники?

Сколько всего их нарисовано? Как узнали?

- 2) ознакомление с конкретным смыслом умножения провожу через сложение одинаковых слагаемых: 3+3+3+3=12. Наблюдая, учащиеся делают вывод, что складывают одинаковые слагаемые. Далее учитель показывает, как запись сделать короче: $3\cdot 4=12$.
- 3) для предупреждения ошибок, что любое выражение на сложение можно заменить умножением, даю упражнения вида: 5+5+5 5+5+4 4+4+4+4 4+5+6, чтобы учащиеся заменили, где возможно примеры на сложение умножением.
- 4) ввожу названия компонентов умножения. Для того чтобы лучше запомнить, использую цветовые сигналы. Показываю примеры на умножение и деление, указываю конкретное число. Учащиеся показывают соответствующий цвет. Так можно проверить знания сразу у всех учеников.

5) знакомимся с переместительным свойством.

6) составляем таблицы:

На основе смысла умножения	2·2=2+2=4
·	3·2=3+3=6
На основе переместительного свойства	2·3=3·2
умножения	2 · 4=4 · □
	2.5=□.□ и т.д.
На основе связи умножения и деления	4:2
	6:2 6:3
	8:2 8:4 и т.д.

Работу над устными приёмами внетабличного умножения и деления представлю в таблице:

Случаи	Приёмы вычислений	Знания, умения и навыки
умножения		_
и деления		
30*2	3д.*2=6д.	Разрядный состав чисел.
60:2	6д.:2=3д.	Таблица умножения и деления.
34*2	34*2=(30+4)*2=30*2+4*2=	Разрядный состав чисел. Распредели-
	60+8=68	тельный закон умножения. Умноже-
		ние круглых чисел. Табличное умно-
		жение. Сложение двузначных чисел.
68:2	68:2= (60+8):2=60:2+8:2=	Разрядный состав чисел. Свойство
68:4	=30+4=34	деления суммы на число. Деление
	68:4= (40+28):4=40:4+28:4=	круглых чисел. Табличное деление.
	10+7=17 (Чтобы найти, какими сла-	Сложение на основе нумерации в
	гаемыми представить делимое,	пределах 100.
	нужно найти наибольшее круглое	
	число, которое будет делиться на	
	делитель.)	
68:17	а) способом подбора: 17*2=34,	Умножение двузначного числа на од-
	17*3=51, 17*4=68;	нозначное.
	б) при умножении делителя на	
	частное должно получиться число,	
	которое оканчивается последней	
	цифрой делимого. Последняя цифра	
	делителя -7, последняя цифра дели-	
	мого – 8. 7*4=28 оканчивается на 8	
	. Проверяем 17*4=68.	

Приемы устных вычислений с трехзначными и многозначными числами сводятся к действиям над числами в пределах 100 [7, с.129]. Опираясь на методику М. А. Бантовой, работаю над каждым приемом поэтапно. На **первом эта-пе** подготовки к введению нового приема создается готовность к усвоению вычислительного приёма. Учащиеся уже владеют основными операциями: смыс-

лом действия, свойствами действия, нахождением результатов действия на основе смыслов с помощью действий с предметами или их изображениями. На втором этапе ознакомления с вычислительным приемом учащиеся усваивают суть приема: какие операции надо выполнять и в какой последовательности. Выполнение каждой операции проговаривается вслух, сначала с моей помощью, потом самостоятельно. На третьем этапе закрепления знания приема и выработки вычислительного навыка учащиеся твердо усваивают систему операций и доводят ее до автоматизма.

В своей практике использую все вышеперечисленные этапы работы над приемами устных вычислений. Приведем примеры упражнений на формирование вычислительных навыков.

«День и ночь»

Учитель сообщает: «Ночь». Дети опускают головы и закрывают глаза. Учитель продолжает: «Я задумала два числа, сложила их и получила 9. Какие числа я задумала? Кто их знает, для того наступает день». Тот, кто знает ответ, поднимает голову, открывает глаза и показывает числа на карточках или называет их.

«Решето»

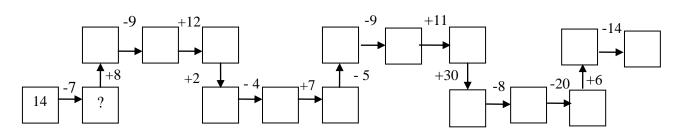
1. Вставьте знаки арифметических действий:

$$40 \ \Box \ 7 \ \Box \ 3=44; \qquad 100 \ \Box \ 9 \ \Box \ 50=41; \qquad 67 \ \Box \ 3 \ \Box \ 8=62; \qquad 56 \ \Box \ 3 \ \Box \ 7=52.$$

- 2. Вставьте пропущенные числа: $6+\Box=14$; $\Box-7=9$; $\Box+8=15$; $16-\Box=8$.
- 3. Вставьте число и знак арифметического действия: $4 \square \square = 9$; $3 \square \square = 1$.
- 4. Восстановите примеры, чтобы в каждой строчке вместо звездочки были одинаковые цифры:

$$8: * = * \cdot * (8:2=2\cdot 2)$$

$$6+*=*\cdot*(6+3=3\cdot3)$$


«Математическая цепочка»

Для поддержания интереса к выполнению задания можно предложить интересные формулировки с вариантами ответов.

Задание. Решив математическую цепочку, узнаете, какова температура тела у

кошки и собаки.

a) 12 (36,6 °C); б) 14 (37,7 °С); в) 20 (38,8 °С).

«Магические квадраты»

В магическом квадрате сумма чисел в каждой строке, в каждом столбце и по диагоналям составляет одно и то же число. В зависимости от уровня знаний и темы урока предлагаю различные по сложности задания с магическим квадратом. Можно определить такую последовательность этапов работы, которая практически является вариантом проведения игры.

1. Сложить числа по всем строкам, столбцам и диагоналям предложенного квадрата:

6	11	4
5	7	9
10	3	8

- 2. Проверить, является ли любой предложенный квадрат магическим.
- 3. Заполнить пропуски в предложенном квадрате таким образом, чтобы квадрат получился магическим.
- 4. Преобразовать магический квадрат путем увеличения или уменьшения каждого числа на несколько единиц.
- 5. Самостоятельно составить магический квадрат с суммой 15, используя карточки с числами от 1 до 9.
- 6. Найти в предложенном квадрате числа, которые поменяли местами.

«Снайпер»

Учитель записывает на доске число (ответ) или показывает на карточке. Уча-

щиеся называют выражение, ответом к которому является данное число.

35+46	90–56	37+26
60-31	23+49	57–46
28+35	46–29	56+39

Планируя уроки математики, стремлюсь, чтобы устные вычисления пронизывали почти весь урок. Их я соединяю с проверкой домашних заданий, актуализацией знаний (приложение 2), объяснением нового материла, закреплением изученного материала. Материал для этого подбираю из учебника, специальных сборников, разрабатываю самостоятельно. Стараюсь проводить урок в форме игры, соревнования или внести элемент занимательности. При выборе упражнений отдаю предпочтение обучающим заданиям, в которых доминирует познавательная мотивация, ориентируюсь на развивающий характер деятельности, учитываю индивидуальные особенности учащихся. При подборе вычислительных заданий стремлюсь к вариативности формулировок, неоднозначности решений, выявлению разнообразных закономерностей и зависимостей, использованию различных моделей (предметных, графических, символических).

Учитывая виды упражнений, устный счет я провожу в разной форме восприятия: беглый слуховой счет, который сопровождается показом детьми ответов цифрами; зрительный счет, запись в тетради примеров с ответами; комбинированная форма счета, то есть устные вычисления с последующей записью результатов вычислений, которые и помогают довести его до автоматизма.

Для достижения учащимися автоматизированного вычислительного навыка в своей работе использую математический тренажер (приложение 3). Работа с тренажером помогает налаживать систематическую тренировку в вычислениях, позволяет выполнить большой объем вычислений за короткий промежуток времени. Такие упражнения тренируют внимание, формируют «числовую зоркость», развивают оперативную память. В основе технологии выполнения заданий лежит принцип соревновательности: необходимо выполнить задание, уложившись в предлагаемое время [1, с. 3].

Упражнения на нахождение математических выражений имеют очень много вариантов. Например: я читаю выражения в разной словесной форме или учащиеся самостоятельно это делают и находят значения:

Чему равна сумма чисел 15 и 7?

Уменьшаемое 15, вычитаемое 7. Чему равна разность?

На сколько число 15 больше 6?

Уменьши число 15 на 6.

Из 15 вычесть 6, 15 минус 6 и т.д.

Для развития навыка устного счета подбираю упражнения на нахождение значения выражений, которые включают одно и более действий одной ступени или разных ступеней, например: 15+3-8, 100-60:2. Могут быть со скобками или без скобок: (30-3):3; 30-3:3. Как и выражения в одно действие, выражения в несколько действий учу читать разными способами. Например:

из 30 вычесть частное чисел 3 и 3 – получится 29;

уменьшаемое 30, вычитаемое частное чисел 3 и 3. Разность равна 29.

Подбираю выражения в зависимости от изучаемого содержания: с однозначными, двузначными, трехзначными и многозначными числами. Упражнения на нахождение значения выражения часто использую в разных дидактических играх, что способствует развитию познавательного интереса к предмету (приложение 4).

Выполнение упражнений на сравнение математических выражений способствуют усвоению теоретических знаний об арифметических действиях, их свойствах, о равенствах, о неравенствах, помогает выработке вычислительного навыка. В своей практике использую такие задания, когда нужно установить, равны ли значения выражений, а если не равны, то какое из них больше или меньше. Предлагаю упражнения, в которых уже дан знак отношения и одно из выражений, а другое выражение надо составить или дополнить: $8 \cdot (10 + 2) = 8 \cdot 10 + 2$. Выражения могут включать различный числовой материал: однозначные, двузначные, трехзначные числа и величины. Выражения могут быть с разными действиями.

В качестве устных упражнений использую и различные виды **работы с уравнениями**. Уравнения предлагаю в разных формах, например: решите уравнение х+6=32; я задумала число, умножила его на 5 и получила 85. Какое число я задумала? На доске записываю несколько уравнений и один ответ. Какому из данных уравнений он принадлежит? «Математический зрительный диктант», где учащиеся на доске видят записанные уравнения, выполняют устно все операции и записывают только ответы.

Математический диктант

Запишите в тетрадь ряд чисел (под диктовку): 6, 1, 3, 5, 4, 2.

- 1) Обведите синим карандашом число, которое предшествует при счете числу 4.
- 2) Обведите зеленым карандашом два числа, между которыми в натуральном ряду стоит число 3.
- 3) Обведите желтым карандашом число, которое следует при счете за числом 4.
- 4) Сколько надо прибавить к 5, чтобы получилось 6? Обведите ответ красным карандашом.

Проверка задания осуществляется по образцу на доске.

«Шифровка»

Детям предлагается расшифровать слово. Для этого надо решить уравнения и вместо цифр вставить буквы.

15	5	3	19	5	16	4

Б	17+X=20	X=
P	X-7=12	X=
A	18-X=14	X=
T	X+2=18	X=
О	11+X=16	X=
Д	X-2=13	X=

Игру можно проводить на время.

Одним из самых сложных видов устных вычислений является решение задач. Для работы предлагаю задачи разных видов (содержание задач представляю схематически, в виде таблиц, краткой записи).

Предлагаю при решении задач следующие задания: а) учащимся показываю только ответы — им необходимо определить номер данной задачи; б) учащимся предлагаю решение задач в виде выражения, а они должны определить номер соответствующей задачи; в) читаю условие, им следует изменить вопрос так, чтобы задача решалась иначе; г) составить задачу на данное действие; д) придумать обратные задачи.

«Плюс или минус». У учащихся карточки со знаками «+» и «- ». Учитель последовательно читает условие задач изученных видов, а учащиеся на карточках показывают математические знаки, с помощью которых их можно решить. Например: «У Виталика 3 красные машинки и 4 синие. Сколько всего машинок у Виталика?», «У Оли 9 открыток. 3 открытки она подарила подруге. Сколько открыток у нее осталось?». Результаты записываются в тетради.

Задачи для устного решения подбираю так, чтобы они способствовали закреплению умения решать задачи ранее изученных видов или же служили подготовкой учащихся к решению новых видов задач. Часто в своей практике использую «Математические диктанты задач» (приложение 6). Этот вид работы сразу показывает, какой вид задачи не усвоен и над чем нужно еще поработать.

Математические диктанты задач

Учитель читает задачу. Учащиеся решают ее устно и записывают только ответ.

- 1. В бидоне 35 л молока. Сколько литров молока в 3 таких бидонах?
- 2. За 6 ч автобус проехал 300 км. Найдите скорость автобуса.
- 3. В пакете 700 г гречки. Сколько гречки надо добавить до 1 кг?
- 4. Чему равен периметр квадрата со стороной 150 см?
- 5. Велосипедист ехал 3 мин со скоростью 180 км/ч. Какое расстояние он проехал?
- 6. Туристы должны пройти 75 км. В первый день они прошли одну пятую

всего маршрута. Сколько километров прошли туристы в первый день?

- 7. Пароход прошел 75 км со скоростью 25 км/ч. Сколько часов пароход был в пути?
- 8. Сейчас 10 ч 37 мин. Сколько минут осталось до 11ч?

Как показывает практика, выполнение разнообразных устных упражнений на устный счет я способствует более глубокому усвоению темы урока, повышению познавательного интереса на уроках математики как одного из важнейших мотивов учебно-познавательной деятельности, развитию логического мышления, стремления совершенствовать способы вычислений и решения задач. А это важнейшее условие успешности ученика.

Игра «Лесенка»

Дети встают с места и считают от 1 до 10.

Называя числа в порядке увеличения, мы можем оказаться на верхней ступеньке лесенки и стать похожими на великанов (А сейчас мы спускаемся по лесенке, называя числа в порядке уменьшения (дети приседают).

- 2. Счет цепочкой порядковыми числительными через число до 20.
- 1. Найди закономерность в ряду чисел и продолжи.

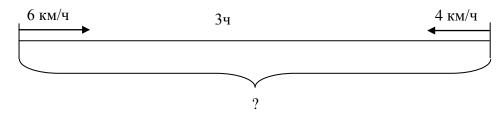
$$5, 6, 15, 12, 25, 18, ..., ..., ..., (+10, +6)$$

2. Вычисли удобным способом.

3. Реши задачи.

С какой скоростью двигался велосипедист, если 63 км он проехал за 3 часа? Автомобиль, двигаясь со скоростью 90 км/ч, проехал 540 км. Сколько часов он был в пути?

Самолет летел со скоростью 900 км/ч. Какое расстояние он пролетел за 2 ч?


4. Прочитай задачу, реши, придумай обратные задачи.

Скорость движения пешехода равна 6 км/ч. Какое расстояние он пройдет за 3 часа?

5. Нарисуй схему к задаче.

Из одного пункта одновременно в противоположных направлениях вышли два пешехода. Скорость одного из них была 6 км/ч, а другого – 4 км/ч. Какое расстояние будет между ними через 3 часа?

6. Придумать условие задачи по схеме.

Литература

- 1. **Агейчик, Н. Н.** Устный счет в 3 классе: математический тренажер: табличное умножение и деление / Н. Н. Агейчик. 4-е изд. Минск: Аверсэв, 2015. 56 с.
- 2. **Баматова,** Д. К. Проблема формирования вычислительных навыков младших школьников в современных условиях / Д. К. Баматова. // Современные наукоемкие технологии. -2011. № 1. C. 66–68.
- 3. **Бантова, М. А.** Система формирования вычислительных навыков / М. А. Бантова. // Начальная школа. 1995. № 11. С. 38—43.
- 4. **Бантова, М. А.** Методика преподавания математики в начальных классах / М. А. Бантова, Г. В. Бельтюкова. Москва: Просвещение. 1984. 335 с.
- 5. **Зайцева, О. П.** Роль устного счета в формировании вычислительных навыков и развитии личности ребенка / О. П. Зайцева. // Начальная школа. № 1.-2001.-C.65-66.
- 6. **Истомина, Н. Б.** Методика обучения математике в начальной школе: развивающее обучение / Б. Н. Истомина. Смоленск: Ассоциация XXI век. 2005. 272 с.